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It is proposed in this paper that non-symmetrical calendering can theoretically be analyzed 
easily by the broken section method. We assume that the flow is steady, isothermal and 
laminar and the polymeric materials behave as a power law fluid with flow index n.  In the 
direction of calendering, polymeric materials between two rolls are broken into many 
sections, each of unit length. The materials in each section having different heights related 
to the clearance between two rolls behave under combined drag and pressure flow of power 
law fluids between parallel plates. The pressure distribution in the direction of calendering 
can be solved in four cases where the relationships between drag and pressure flows are 
varied, and, in addition, the position of maximum pressure can be determined. The 
theoretical results on the velocity profiles of polymeric materials in calendering can be 
obtained with better accuracy in the narrow nip region. 

1. INTRODUCTION 

The broken section method has been applied successfully to the analysis of 
various boundary value problems in polymer processing,' especially on 

t To whom all communications should be addressed. 
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2 K. ITO, S. YOSHIKAWA AND H .  YAMAMURA 

extrusion die design p r ~ b l e m . ~ - ~  Non-symmetrical calendering of polymeric 
materials has been solved by bi-polar6 coordinates. However the analytical 
results solved rigorously by bi-polar coordinates are very complicated. 
An easy and convenient approach to analysis on non-symmetrical calendering 
of polymeric materials by the broken section method is reported in this 
paper. 

II. FUNDAMENTAL 

Because two-dimensional flow is assumed in this analysis, the Cartesian 
coordinate for non-symmetrical calendering by a pair of driven rolls with 
different diameters ( R ,  # R2) and different rotating peripheral velocities 
( U ,  # U2),  is employed, as shown in Figure 11-1. It seems to be reasonable 
that the x-axis is the neutral axis decided by the bi-polar6 coordinate system, 
while the y-axis is located in the nip section. 

FIGURE 11-1 Notation for analysis of flow in non-symmetrical calendering. 

It is assumed that flow is steady, isothermal and laminar and that the 
power law is applicable to polymeric materials. The power law is written 
in the form7 

t = q j  (11-1) 

(11-2) 
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METHOD FOR ANALYZING POLYMERIC MATERIALS 3 

where q is the viscosity at shear rate 3. The flow index of the fluid is n and qo 
is the viscosity at the standard shear rate fo ,  

The total contacting length of polymeric materials with the rolls in the 
x-axis is X .  

where 
x = IXII+lX2l (11-3) 

x1 : the distance between entrance and nip 
x2 : the distance between exit and nip. 

It is assumed that the nip is small in comparison to R1 or R2 and so the 
flow velocity v,, in the y-direction can be neglected. Furthermore, it is assumed 
that the variation in the flow velocity v, in the x-direction is much less in 
the x-direction than in the y-direction. Hence the derivatives of 0, with respect 
to x can be ignored, leaving only derivatives with respect to y .  The additional 
simplified assumption, that the hydrostatic pressure varies only in the x- 
direction, is made. Thus it has been analyzed theoretically and experi- 
mentally that the pressure profile of calendering in the x-direction has a 
maximum at x = x,,, between entrance and nip. Note that the pressure 
gradients (dp/dx) in the x-direction have the positive and negative values at 
the regions for x I  < x < x, and x, < x < x2 respectively. 

111. BROKEN SECTION METHOD 

For the purpose of the analysis by the broken section method, the total 
contacting length X is split into N sections, each of width Wand length S, 
where 

S = X/N.  (111-1) 

As shown in Figure 111-1, the height of the ith section is H i  where it is 
expressed in terms of R1, R2 and x 

where 
Hi = lHlil+ lH2il (111-2) 

HI i :  the upper height of the ith section from the x-axis 
H Z i :  the lower height of the ith section from the x-axis. 

The pressure at the start of the ith section is pi-l and at the end is pi. 
Hence ( p i - p i - J S  is the pressure gradient through the ith section. Thus, 
the x-component of the momentum equation of the ith section in calendering 
of a power-law fluid reduces to 

(111-3) 
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4 K .  ITO, S. YOSHIKAWA A N D  H. YAMAMURA 

Under the assumption of no slip, the upper and lower surfaces of the ith 
section are dragged to the x-direction by a pair of driven rolls. Hence the 
boundary conditions are as follows. 

u.xi(Y = + i )  = UI i (111-4) 

u,,(y = - H J  = u,i (111-5) 

where 
U l i :  x-component of the peripheral velocity U1 of upper roll at the part 

U 2 i :  x-component of the peripheral velocity U2 of lower roll at the part 
contacted with the ith section. 

contacted with the ith section. 

FIGURE 111-1 
principal dimensions and flows. 

The ith section of the polymeric materials being calendered and showing 

By defining the following dimensionless variables 

one obtains the following differential equation* 
section : 

(I1 1-6) 

(I 11-7) 

(111-8) 

for the flow of the ith 

(111-9) 

where the sign on the right hand side is positive when ( p f - p i - l ) / S  > 0 and 
negative when ( p i - p i - J S  < 0. Depending upon the mutual relationship 
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METHOD FOR ANALYZZNG POLYMERIC MATERIALS 5 
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FIGURE 111-2 Types of velocity profiles in flow of polymeric materials between a pair 
of driven rolls; when (dpldx) > 0 (a), (b) and when (dpldx) < 0 (c), (d). 

between the pressure flow by ( p i - p i P l ) / S  and the drag flow by U l i  and U2i ,  
the four4 velocity profiles are considered, as shown in Figure 111-2: (a), (b), 
(c) and (d). The theoretical analysis on the flow in the ith section for each 
case is presented in the following section to determine the pressure and 
the vXi component as a function of the position variables x and y .  

IV. ANALYSIS ON FLOW IN BROKEN SECTION 

(a) Figure 111-2(a), ( p i - p i - J S  > 0. 

The differential equation for (a) is as follows. 

(IV-I) 
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6 K. ITO, S. YOSHIKAWA AND H. YAMAMURA 

The analytical result is obtained. 

(IV-2) 
( j j  + K i ) (  ' I n +  ) 4i = +K2i 

(t .1) 

where K l i  and K z i  are integration constants and can be determined by the 
following boundary conditions. 

o,,(jj = + H , ~ / H ~ )  = uli, i.e. 4i(jj = + H , , / H , )  = rF1, (IV-3) 

Namely 
( l / n +  1) ( + ? + K l i )  

+Kzi  = r;' 
(5 .1)  

Hence 

(IV-5) 

(IV-6) 

(IV-7) 
( +?+Kli) 

(t.1) 

Kzi  = r,:1- 

K1 is determined by the following equation. 
( l / n + l )  ( l / n + l )  

g + K l i )  -( -%+K,i)  = (i+l)(.;'-z) (IV-8) 

The volumetric flow rate Q can be expressed as 
+ H l i I H l  

- H 2 d H 1  
o y i d y  = riuliHi J 4 i d y  
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METHOD FOR ANALYZING POLYMERIC MATERIALS 7 

T i  and K ,  are a function of (p i -p i -JS .  

(b) Figure 111-2 (b), (p i -p i - , ) /S  > 0. 
The velocity profile for (b) has an extreme value somewhere between two 

rolls, at J = Jti. It is necessary, then, to write the differential equation for 
each region separately and account for the proper sign for the shear rate in 
the absolute value sign. In a similar way, Eq. (111-9) in the upper part of 
the velocity profile, where dc$ui/djJ > 0, is as follows. 

(IV-10) 
Hi 

In the lower part of the velocity profile, where d $ ~ ~ / d J  < 0, on the other 
hand, Eq. (111-9) can be written as 

The boundary conditions for this case are as follows. 

(IV-11) 

(IV-12) 

(IV-13) 

(IV-14) 

(IV-15) 

(IV-16) 

(IV-17) 

(LV-18) 
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8 K.  ITO, S. YOSHIKAWA AND H. YAMAMURA 

where the following equation for jt i  is obtained from the boundary condition 
(IV- 1 6). 

The volumetric flow rate Q is obtained by integrating the velocity equation. 

Q = TiUliHi(SY1' bLi d j + s  bUi d j }  (IV-20) 
+ H I  i / H i  

W - H z i / H i  ef i 

T i  and jti are a function of ( p i - p i - J S .  
(c) Figure 111-2 (c), ( p i - p i - J S  < 0. 

The differential equation for (c) is as follows. 

(IV-23) 

The analytical result can be written as 

where K3i and K4i are integration constants and can be determined by the 
following boundary conditions. 

o x i ( j  = +?) = uli, i.e. (IV-25) 

vx i ( j  = -%) H2 i = Uzi, (IV-26) i.e. bi(j = -5) = - u2 i 
H~ riuli 
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METHOD FOR ANALYZING POLYMERIC MATERIALS 9 

are determined by solving the following In the similar way to (a), K3i and 
two simultaneous equations. 

(IV-27) 

(IV-28) 

Hence 

(IV-29) 

K3i is determined by the following equation. 

The volumetric flow rate Q can be expressed as 

T i  and K3i are a function of ( p i - p i - J S .  

(d) Figure 111-2 (d), ( p i - p i - J S  < 0. 
The velocity profile for (d) has an extreme value somewhere between two 

rolls, at j7 = j7:i. In a similar way to (b), hence, it is necessary to write the 
differential equation for each region separately and account for the proper 
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10 K. ITO, S. YOSHIKAWA AND H. YAMAMURA 

sign for the shear rate in the absolute value sign. - 

) (IV-32) 

(IV-33) 

Hi 

--{(3J} d d4Li = -1 (J:i < JJ < -- H 2 i )  
dJ Hi 

The boundary conditions for (d) can be written as 

J = jj,:.: 
The solutions are 

(IV-36) 

(IV-37) 

(IV-38) 

where J:i can be determined by the following equation obtained from the 
boundary condition (IV-38). 

The volumetric flow rate Q is obtained by integrating the velocity equation. 
+HirIHi 

- Q = l-iUliHj{{F'l q5Li d J + j  +ui d J }  (IV-42) 
W -HziIHi ?a, 
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METHOD FOR ANALYZING POLYMERIC MATERIALS 11 

Ti and JZi  are a function of (p i -p i - , ) /S .  

For the case where the geometrical configurations and the rotating velocities 
of a pair of rolls and further the flow behaviors of polymeric materials are 
known, the equation on the volumetric flow rate Q of (IV-9), (IV-20), 
(IV-31) or (IV-42), has N unknown p i .  Because the volumetric flow rate 
through each broken section is always equal to the constant Q and the both 
entrance and exit pressures in calendering are zero, the simultaneous equation 
of (IV-9), (IV-20), (IV-31) or (IV-42) contains N unknown p i  and hence the 
calendering problem is completely formulated. 

Determination of the position of maximum pressure in 
calendering 

In general there is a maximum pressure in calendering between entrance and 
nip. The position of maximum pressure at which the sign of pressure gradient 
(p i -p i - , ) /S  is varied, is very important also in the broken section analysis of 
calendering. 

There is no pressure flow in the section of maximum pressure and hence 
the flow through this section is caused only by the drag flows driven by a 
pair of rolls. Therefore 

(IV-45) 

where 
H,: height of the section of maximum pressure 
Ulm: x-component of the peripheral velocity U, of upper roll at the 

U2,: x-component of the peripheral velocity U2 of lower roll at the 

As shown in Figure 11-1, H,, U,, and U,, can be expressed in terms of 
a,, and uZm. Since ulm has the geometrical relation to u2,, the position of 
maximum pressure, i.e. u,, or elm, can be determined by Eq. (IV-45). 

position of maximum pressure 

position of maximum pressure. 
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12 K. ITO, S. YOSHIKAWA AND H. YAMAMURA 

V. DISCUSSION 

The diameters of rolls are usually very large in comparison with the thickness 
of sheet or film of polymeric materials. Except the massive parts at the 
entrance region under multiple stress state, calendering problem with better 
accuracy in narrow nip region, can successfully be analyzed easily by 
broken section as well as lubrication theory. 

In reality the pressure to the direction of roll axis is not uniform with a 
maximum at the mid surface of width. Together with rigorous analysis on 
the massive parts near the entrance region under complex flow field, the 
study on calendering should be developed three-dimensionally in the future. 

The broken section method must also consider the spreading in the direction 
of the roll axis due to the pressure flow of the materials and also the normal 
stressg effect of polymeric materials. 
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